
Leveraging Microservices

for Unified Commerce

Authored by ITC Infotech

Bharath KS
Vice President

Product Engineering Services

Alok Verma
Senior Vice President

Retail & Global Strategic Partnerships

Ronojit Mukherjee
Senior Vice President

Hi Tech

As sales channels proliferated with increased adoption of social, mobile and
cloud technologies, enabling omni channel commerce emerged as the single
most critical need for brands across business domains.

However, this proliferation in the number of connected devices and interfaces
requires a hyper connected, flexible and scalable technology architecture,
enabling a seamless customer experiences ranging from browse-any-channel,
buy-any-channel, market-any-channel, service-any-channel and so on.

In omni channel, you have
multiple channels, but you don’t
have one piece of software, one
version of the truth: You have
many versions of the truth. In the
unified commerce world, it’s all
connected in realtime. I don’t just
mean the web side, but the
mobile side, the web side and the
store side-all in real time.

Ken Morris,
Co-Founder Boston Retail Partners

The Emergence of
Unified Commerce

Retailers, now, believe that in order to truly improve customer engagement and experience, a unified commerce
environment is essential. While some investment initiatives are targeted toward integrating software systems
required to sell products across different channels into a unified platform, other initiatives aim at moving the
needle on “unified commerce” further by bringing the entire retailing system from the store to website under a
single, unified technology system.

Forces driving the
Unified Commerce Model

Demand-side forces

As digital technologies enable deeper modes of
engagement between the brand and the
consumer, the nature of consumer demand is
changing in fundamental ways.

! Online shopping has extended and enhanced
the traditional storefront. Buyers expect a
larger product assortment, ratings/reviews,
more in-depth product descriptions,
additional rich media, related products, tie-
ins to social media, and so on.

! Consumers expect a seamless, connected
experience across all channels (point of sale,
web, mobile, kiosk, etc.). They expect to see
the same inventory levels, product
assortment, pricing, and other aspects,
regardless of how they interact with a brand.

! Every Internet-connected consumer device
and interface is a potential channel that
consumers can use for shopping. New user
interfaces are launching with amazing
regularity, and successful brands must be
able to extend their experience on every one
of these new devices.

Supply-side forces

We all agree that the nature of consumer
demand is undergoing a series of fast-paced
changes that require technology solutions that
are capable of scale and flexibility,while
providing traceability and governance. However,
current commerce platforms and related IT
organizations are not capable of addressing
this transformation -

! Monolithic commerce systems do not scale
– (i) complexity - it is simply too large for any
developer to fully understand (ii) obstacle to
agile development and deployment (iii) scaling
the application is challenging – application
modules have conflicting resource
requirements (iv) reliability – as all modules
are running within the same process, a bug in
one module sometimes causes the entire
application to crash (v) requires long-term
commitment to a technology stack

! Strong-coupling across architecture- large,
monolithic applications such as ERP, CRM,
WMS, OMS, CMS, etc., expose different endpoints,
which are not independently consumable,
and need to be called in a specific order and
fed specific data. That’s why these monolithic
applications are glued together by the use of
enterprise service buses, with a lot of business
logic residing in those buses. This tight
coupling of large monolithic applications
results in testing and releasing all monolithic
applications together as an atomic unit.

! Strong-coupling across organization teams
–enterprises establish teams with single
focus that result in tight coupling between
horizontal layers. For example, each user
interface (point-of-sale, web, mobile,
kiosk)has its own team. Respective UIs are
tightly coupled to one or more applications,
which are each owned by a separate team.
Often, there’s an integration team that glues
together the different applications. Then,
there’s a database on which all teams are
completely dependent. Infrastructure is
managed by yet another team. These barriers
cause tight coupling between teams, which
introduces communication overhead and
causes delays.

Evolution of the Microservices
Architectural Pattern

Microservices patterns have emerged as “Cloud Native” architectures have evolved with the growth of
successful Web-Scale business models implemented by the internet giants of today – the likes of
Google, Amazon, Facebook, eBay, Netflix, Twitter and a handful of others.

At its core, Microservices are individual pieces of business functionality that are independently
developed, deployed, and managed by a small team of people from different disciplines.

Microservices support and drive the following design objectives:

Services are modular, small
and easily maintainable

Each service owns its data,
interaction via APIs

Services are independently
deployable

Services can scale
independently

Service teams function
autonomously

Improved fault tolerance

Allows for polyglot
programming and

rapid experimentation

Allows for multiple versions
of the service to coexist
in the same environment

Choreography is preferred
over Orchestration

However, Microservices adoption introduces added complexity, and this is key to implementing
solution roadmaps –

Choosing the right set of
services is often complicated

Managing distributed systems
is inherently complex

Deploying features that span
multiple services requires
careful coordination

Shift to microservices can be a
difficult timing decision

The process of decomposing a system into services is most often
an iterative program, guided by the nature of domain workflows
and business transactions

Inter-process communication is pervasive. Managing operational
complexity with multiple moving parts renders release and
deployment automation is a necessity

Deploying features that span multiple services requires
coordination across multiple development teams

Adoption of the microservices architecture renders “rapid iteration”
difficult – this can be a potential dilemma

Distinctive Programming Model

Microservices have evolved from SOA with its
own distinctive programming model. SOA
applications typically use heavyweight
technologies such as SOAP and other WS*
standards along with a ESB, which is a 'smart
pipe' containing business and message-
processing logic to integrate the services.
Applications built using the microservice
architecture tend to use lightweight, open-
source technologies, while communicating via
'dumb pipes' such as a message broker or
lightweight protocols such as REST or gRPC.

Data is key to the microservices architecture.
SOA applications typically have a global data
model and share databases. In the
microservices universe, each service has its
own database. Moreover, each service usually
implements its own domain model. Each
microservice team should have some freedom
in selecting the language/runtime for their
respectiveimplementation. A team writing a
microservice for inventory might want to use
Node.js because of its ability to gracefully
increment and decrement a number without
locking.

Design Patterns Key to
Implementing Microservices

At an aggregate level, the design of microservices requires a categorical separation of concerns –
internal architecture of individual services, and the external architecture that involves infrastructure
orchestration, release and deployment automation, service discovery and traceability.

APIs

Microservice architecture structures an application
as a set of services collaborating in order to
handle requests. Since service instances are
typically processes running on multiple
machines, they must interact using IPC.

Services can use synchronous request/
response-based communication mechanisms
such as HTTP-based REST or gRPC.
Alternatively, they can use asynchronous,
message-based communication mechanisms
such as AMQP or STOMP.

There are also a variety of different message
formats. Services can use a human-readable,
text-based formats such as JSON, or XML.
Alternatively, they canuse a more efficient,
binary format such as Avro, or Protocol Buffers.

Versioning

As a defining requirement, microservices
should be able to support multiple versions in
the same environment, at the same time.

The development environment, therefore,
requires implementing a feature-rich source
control management system (SCM), and the
deployment mechanism should be aware of the
multiple versions of the code that are running
and be able to quickly pull out a version if it’s
not working well.

Auto scaling and monitoring needs to be
version-aware, as well.

Containers

Containers are fast emerging as the standard
way of packaging and running distributed
applications. Teams can package their
respective microservice modules into one or
more containers, which can then be promoted
through environments as atomic, immutable,
units of code/configuration/runtime/system

libraries/operating system/start-and-stop
hooks. A container deployed locally will run the
exact same way in a production environment.

Managing container environments is an
external architecture concern.

Software-defined infrastructure

Since each team needs to own its entire stack
and not be dependent on any other team,
operating in a cloud environment becomes a
requirement. A microservice’s configuration
could be packed into the container, or it can be
externalized and pulled by the microservice as
required. It’s best to place the configuration
inside the container so that the container itself
runs exactly the same regardless of its
environment.

As part of achieving disposable infrastructure,
HTTP session state (login status, cart, pages
visited, etc.) should be persisted to a third-party
system, like a cache grid. None of it should be
persisted to a container because of its
ephemeral nature. Further, every microservice
needs to exclusively own its data.

Circuit Breakers

Circuit Breakers are designed for isolating
failures. Calls from one microservice to another
should always be routed through a circuit
breaker such as Hystrix from Netflix.

A circuit breaker uses active, passive, or active
plus passive monitoring to keep tabs on the
health of the microservice being called. Active
monitoring can probe the health of a remote
microservice on a scheduled basis, whereas
passive monitoring can monitor how requests
to a particular microservice is performing. If a
microservice is not responding, the circuit
breaker will stop making calls to it. This is key
to limiting the cascading nature of system
failures.

Key Elements of Internal Architecture Include:

Key Elements of External Architecture Include

Container Orchestration

Container orchestration is a PaaS that is
increasingly being adopted in conjunction with
microservices. The container itself becomes the
artifact that the container orchestration system
manages, rendering it extremely flexible.
Container orchestration systems are less
opinionated than traditional PaaS and are more
flexible. �

Software-Defined Networking,
Autoscaling, Storage, Security

While container orchestration provides direct
support for implementing microservices
architecture, related capabilities that require to
be addressed from a cloud platform include
software-defined networking, autoscaling,
storage and security (layered above networking,
including identification, authentication and
authorization)

Release Management

Every team should release code using the same
process. The artifacts should be containers
that, like microservices, do only one thing. For
example, your application should be in one
container and your datastore should be in
another. Container orchestration systems are
all built around the assumption of a container
running just one thing.

Key functions that need to be orchestrated
include:

! Build container images, inclusive of code/
configuration/runtime/system libraries/
operating system/start-and-stop hooks

! Define success/failure criteria

! Define rollout strategy

! Following the deployment, the container
orchestration system needs to update load
balancers with the new routes, cutover traffic,
and then run the container’s start/stop hooks

Service Registry

In a distributed environment, with container
orchestration in place, service discovery needs
to be addressed as a core architectural
requirement -

! Containers might live for only a few seconds,
minutes, or hours�

! Containers often expose nonstandard ports.
For example, you might not always be able to
hit HTTP over port 80. �

! A microservice is likely to have many major
and minor versions live at the same time,
requiring the client to state a version in the
request�

! There are dozens, hundreds or even
thousands of different microservices�

Service discovery can adopt two basic
approaches: client-side and server-side. �

The client queries a standalone service registry
to ask for the path to a fully qualified endpoint.
The query could be a formal JSON document
stating version and other quality-of-service
preferences, depending on the sophistication of
the service registry. The major drawback of this
approach is that the client must “learn” how to
query each microservice, which is a form of
coupling. Another issue is that the client will
need to re-query for an endpoint if the one it’s
communicating with directly fails.

The server-side method is often preferable due
to its simplicity and extensive use today. This
approach uses a load balancer. When the
container orchestration places a container, it
registers the endpoint with the load balancer.
The client can make some requests about the
endpoint by specifying HTTP headers or similar.
Unlike client-side load balancing, the client
doesn’t need to know how to query for an
endpoint. It is simpler as the load balancer just
picks the best endpoint.

Load Balancing

With server-side service registry, load balancing
becomes critical. Every time a container is
placed, the load balancer needs to be updated
with the IP, port and other metadata of the
newlycreated endpoint.

There are two levels of load balancing within a
container orchestration system: local and
remote.

Local load balancing is load balancing within a
single host. By intelligently aggregating
containers on the same host, we can minimize

network traffic. Networking can also be
simplified because it’s over localhost. Latency
is zero, which helps improve performance.

In addition to local load balancing, remote load
balancing would require to be provisioned. It’s a
standalone load balancer that is used to route
traffic across multiple hosts. API load balancers
are more purpose built, supporting
identification, authentication, and
authorization-related security concerns. They
can cache entire responses where appropriate
and better support versioning.

API Gateway

When a webpage or a screen on a mobile device
requires to retrieve data from multiple
microservices, an API gateway (intermediary)
makes concurrent requests to each service
required to build a single response. The client
gets back one tailored representation of the
data. As microservices are meant to be
omnichannel, the API gateway typically uses
intelligence to optimize the queries it makes to
each service.

The API gateway plays the role of a façade,
provides the REST APIs that are used by the
web and mobile applications. The gateway may
play the role of an API composer. This option
makes sense if the query operation is part of
the application’s external API. Instead of simply
routing a request to another service, the API
gateway implements the API composition logic.
This approach enables a client, such as a
mobile device, that is running outside of the
firewall to efficiently retrieve data from
numerous services with a single API call.

This potentially creates coupling because the
layer above now needs to know more details
about your service. So, there is a trade-off that
requires to be evaluated.

Eventing

Event sourcing represents an effective way to
implement business logic in an event-driven
microservices environment. We capture domain
events, which communicate changes to data
between services. Event sourcing is a different
way of structuring the business logic and
persisting aggregates. It persists an aggregate

as a sequence of events. Each event represents
a state change of the aggregate. An application
recreates the current state of an aggregate by
replaying the events.

Clients, API gateways, and other microservices
might synchronously call into a microservice
and ask for the current inventory level for a
product, or for a customer’s order history, for
example.

But behind the synchronous API calls, there’s
an entire ecosystem of data that’s being passed
around asynchronously. Every time a
customer’s order is updated in the order
microservice, a copy should go out as an event.
Refunds should be thrown up as events.
Eventing is far better than synchronous API
calls because it can buffer messages until the
microservice is able to process them. It
prevents outages by reducing tight coupling.

In addition to actual data belonging to
microservices, system events are also
represented as microservices. Log messages
are streamed out as events—the container
orchestration system should send out an event
every time a container is launched; every time a
health- check fails, an event should go out.

Everything is an event in a microservices
ecosystem.

Toward an API-driven
Implementation Framework

In this paper, we have highlighted the key architectural tenets that underlie the move to
cloud-native applications and platforms leveraging emerging microservices
architectural patterns.

We will follow up with implementation frameworks and best practices that have
emerged in our experiences transitioning legacy commerce stacks to microservices-
driven distributed cloud architectures.

As is evident from our earlier discussions, APIs quickly emerge as the key functional
component for scaling and sharing service interfaces across business and customer
domains. However, Business APIs require a management framework for design,
documentation, versioning, workflow, analytics, security and connector integration.

We, at ITC Infotech,have created, JANA, an API lifecycle management platform for
accelerating the transition to unified commerce. JANA comes pre-packaged with key
microservices in the areas of payment, order management, search as well as a growing
list of connectors with existing commerce platforms and other third-partyservices,
capabilities or products that can be quickly pluggedin, providing extensibilityand
enabling quick, iterative experimentation.

We will discuss JANA’s architectural framework in an upcoming paper.

About ITC Infotech

ITC Infotech is a specialized global full service technology solutions provider, led by Business and Technology Consulting. ITC

Infotech’s Digitaligence@work infuses technology with domain, data, design, and differentiated delivery to significantly enhance

experience and efficiency, enabling its clients differentiate and disrupt the business.

The company caters to enterprises in Supply Chain based industries (CPG, Retail, Manufacturing, Hi-Tech) and Services (Banking,

Financial Services and Insurance, Airline, Hospitality) through a combination of traditional and newer business models, as a long-

term sustainable partner.

ITC Infotech is a fully-owned subsidiary of ITC Ltd, one of India’s foremost private sector companies and a diversified conglomerate.

www.itcinfotech.com | Email: contact.us@itcinfotech.com

©2018 ITC Infotech. All rights reserved.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

